Correlation of GLUT1 and GLUT4 with prognosis of patients with hypothyroidism and cardiac insufficiency

Xiaocheng Song1*, Yudan Zhu1*, Zhi Dai3*, Guimei Ling4, Hongqin Tang2, Qiannan Xu2, Tinglin Guo1

Departments of 1Respiratory and Critical Care Medicine, 2Intensive Care Unit, Naval Hospital of Eastern Theater of PLA, Zhoushan, Zhejiang Province, China; 3Department of Critical Care Medicine, 921 Hospital of Joint Logistics Support Force of PLA, Changsha, Hunan Province, China; 4Department of Traditional Chinese Medicine, Baise Municipal Hospital, Baise, Guangxi Province, China. *Equal contributors and co-first authors.

Received August 7, 2020; Accepted September 13, 2020; Epub December 15, 2020; Published December 30, 2020

Abstract: Objective: Hypothyroidism is a disease with symptoms of collective metabolic dysfunction and systemic dysfunction due to the lack of serum thyroid hormones caused by various reasons. GLUT4 is over-expressed in monocytes of patients with hyperthyroidism, there are also studies suggesting that there is a certain regulatory relationship of GLUT1 and GLUT4 with thyroid function. This study is aimed to explore the correlation of glucose transporter 1 (GLUT1) and GLUT4 with prognosis of patients with hypothyroidism and cardiac insufficiency. Methods: From July 2016 to October 2019, totally 116 patients with cardiac insufficiency complicated with subclinical hypothyroidism treated in our hospital were enrolled in the research group (RG), and 110 patients with cardiac insufficiency but normal thyroid function were enrolled in the control group (CG). Serum GLUT1, GLUT4, free triiodothyronine (FT3), free thyroxine (FT4) and thyroid stimulating hormone (TSH) were detected, and the correlation between them was analyzed. Then the predictive value and risk factors of GLUT1 and GLUT4 for poor prognosis of hypothyroidism complicated with cardiac insufficiency were analyzed. Results: The expression levels of GLUT1, GLUT4, FT3 and FT4 in serum of patients in RG was notably lower than that in CG, and TSH expression was remarkably higher than those in CG (P<0.05). In RG, GLUT1 and GLUT4 expression levels were positively correlated with FT3 and FT4 expression (P<0.05), but negatively correlated with TSH expression (P<0.05). ROC of GLUT1 and GLUT4 in RG in predicting poor prognosis of patients was over 0.8. Low expression of GLUT1 and GLUT4 and diabetes were independent risk factors for poor prognosis in patients with hypothyroidism complicated with cardiac insufficiency. Conclusion: GLUT1 and GLUT4 expression levels were significantly decreased in serum of patients with hypothyroidism complicated with cardiac insufficiency. Both of them have high predictive value for poor prognosis of patients, and are independent risk factors for poor prognosis of patients.

Keywords: GLUT1, GLUT4, hypothyroidism, cardiac insufficiency, prognosis prediction

Introduction

Hypothyroidism is a disease with symptoms of collective metabolic dysfunction and systemic dysfunction due to the lack of serum thyroid hormones caused by various reasons [1, 2]. There has been increasing concern in recent years about the cardiovascular risks associated with hypothyroidism because of the large base of patients currently suffering from hypothyroidism [3]. Epidemiological investigation [4] revealed that hypothyroidism is one of the risk factors for the occurrence and development of cardiovascular diseases. For older people who have many underlying medical conditions, hypothyroidism is often overlooked because of its insidious onset and slow progression [5]. Therefore, finding effective indicators to evaluate patients with hypothyroidism and cardiac insufficiency in a timely and effective way is of great clinical significance for the selection of follow-up treatment programs and the improvement of prognosis.

For patients with cardiac insufficiency caused by hypothyroidism, energy metabolism disorder of the heart is one of the important causes [6]. Glucose is one of the main substrates of energy metabolism in myocardial cells, and the utilization of glucose by the body needs the assistance of glucose transporters (GLUTs). Abnormal GLUTs on myocardial cell membrane will
GLUT1 and GLUT4 on patients with hypothyroidism and cardiac insufficiency

affect the normal intake and utilization of energy substances in myocardium [7]. GLUT1 and GLUT4 are mainly distributed in myocardial cells, which are mainly responsible for maintaining glucose intake of myocardial cells in the basic state, and are two of the most important glucose transporters in myocardial tissues. In the basic state, they are stored in cell vesicles and transferred to the cell membrane under the stimulation of insulin, which plays a part in mediating glucose transport [8, 9]. Previous studies [10] found that GLUT4 is over-expressed in monocytes of patients with hyperthyroidism, there are also studies suggesting that there is a certain regulatory relationship of GLUT1 and GLUT4 with thyroid function [11, 12], indicating that GLUT and thyroid function are related to each other.

At present, however, there is no relevant research to investigate the correlation of GLUT1 and GLUT4 with patients with hypothyroidism and cardiac insufficiency. To find new suitable indicators to improve the treatment and prognosis of the patients, we performed the following experiments.

Materials and methods

Clinical data

Totally 116 patients with cardiac insufficiency complicated with subclinical hypothyroidism treated in our hospital from July 2016 to October 2019 were prospectively chosen and enrolled in the research group (RG), and 110 patients with cardiac insufficiency but normal thyroid function treated in our hospital simultaneously were enrolled in the control group (CG). All patients included in the study met the diagnostic criteria of cardiac insufficiency [13], and the patients in RG met the diagnostic criteria of hypothyroidism [14]. Patients with severe hepatic or renal insufficiency, other malignant tumor diseases, or other serious endocrine diseases were excluded. All patients agreed to take part in the study and signed a written informed consent form. Hospital ethics committee authorized the study.

Table 1. Primer sequence

<table>
<thead>
<tr>
<th>Factor</th>
<th>Upstream primer 5’-3’</th>
<th>Downstream primer 5’-3’</th>
</tr>
</thead>
<tbody>
<tr>
<td>GLUT1</td>
<td>TCAACACGGCCCTTCAGTG</td>
<td>CACGATGCTCAGATAGGACATC</td>
</tr>
<tr>
<td>GLUT4</td>
<td>GTAATCTCATGCTCGCACAG</td>
<td>AGCTGAGATCTGGTCAAAAACG</td>
</tr>
<tr>
<td>β-actin</td>
<td>GATTACTGCTCTGCTGCTCAG</td>
<td>GACTCATCGATCCTGCTGG</td>
</tr>
</tbody>
</table>

qRT-PCR detection of GLUT1 and GLUT4 expression

Venous blood (5 mL) of all subjects were drawn on an empty stomach, centrifuged at 1,500 × g for 10 min under 4°C to obtain supernatant for detection. TRIzol was put into the serum for total RNA extraction, and UV spectrophotometer and agarose gel electrophoresis were applied for determination of its purity, concentration and integrity. cDNA reverse transcription was performed in the light of the kit instructions. Power SYBR Green PCR Master Mix was adopted for quantitative RT-PCR. PCR reaction conditions were as follows: 95°C for 30 s, 95°C for 5 s, 60°C for 15 s, with a total of 40 cycles. β-actin was utilized as the internal reference. The primer sequence was shown in Table 1.

Detection of other relevant indicators

Echocardiography was utilized for assessment of cardiac function [left ventricular ejection fraction (LVEF), left ventricular end diastolic diameter (LVEDD)] and heart rate. Free triiodothyronine (FT3), free thyroxine (FT4) (normal reference range: FT3: 3.5-6.5 pmol/L, FT4: 8.5-22.5 pmol/L), and thyroid stimulating hormone (TSH, normal reference range: 0.35-5.29 μIU/mL) were detected by chemiluminescence.

Statistical methods

Experimental data was statistical analyzed using SPSS20.0 [Bizinsight (Beijing) Co., Ltd.]. Counting data adopted Chi-square test, and measurement data adopted mean standard deviation. T test was utilized for comparison between the two groups, and paired T test was utilized for comparison before and after treatment. Pearson was applied for correlation analysis. GraphPad Prism 6 software was applied for image rendering of the experimental pictures. When P<0.05, there was a statistical difference.

Results

General data

There were no significant differences in gender, age and BMI between RG and CG (P>0.05), but there were significant differences in the number of diabetes patients (P<0.05), as shown in Table 2.
GLUT1 and GLUT4 expression levels in serum of two groups of patients

We detected GLUT1 mRNA and GLUT4 mRNA in serum of patients in two groups by RT-PCR, and the results showed that GLUT1 mRNA and GLUT4 mRNA expression levels were evidently lower than those in non-MACE group (P<0.05). ROC analysis indicated that GLUT1 and GLUT4 had high predictive value for poor prognosis of patients with hypothyroidism and cardiac insufficiency. As shown in Figure 4.

Table 2. General data

<table>
<thead>
<tr>
<th>Factors</th>
<th>Research group (n=116)</th>
<th>Control group (n=110)</th>
<th>t/χ²</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td>0.013</td>
<td>0.914</td>
</tr>
<tr>
<td>Male</td>
<td>62 (53.45)</td>
<td>58 (52.73)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>54 (46.55)</td>
<td>52 (47.27)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td>68.42±5.47</td>
<td>68.11±5.58</td>
<td>0.422</td>
<td>0.674</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>23.13±2.25</td>
<td>23.64±2.31</td>
<td>1.681</td>
<td>0.094</td>
</tr>
<tr>
<td>Type of heart disease</td>
<td></td>
<td></td>
<td>0.076</td>
<td>0.963</td>
</tr>
<tr>
<td>Coronary heart disease</td>
<td>71 (61.21)</td>
<td>68 (61.82)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dilated cardiomyopathy</td>
<td>31 (26.72)</td>
<td>30 (27.27)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>14 (12.07)</td>
<td>12 (10.91)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drinking history</td>
<td></td>
<td></td>
<td>0.048</td>
<td>0.827</td>
</tr>
<tr>
<td>With</td>
<td>69 (59.48)</td>
<td>67 (60.91)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Without</td>
<td>47 (40.52)</td>
<td>43 (39.09)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smoking history</td>
<td></td>
<td></td>
<td>0.001</td>
<td>0.970</td>
</tr>
<tr>
<td>With</td>
<td>55 (47.41)</td>
<td>51 (46.36)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Without</td>
<td>63 (54.31)</td>
<td>59 (53.64)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypertension</td>
<td></td>
<td></td>
<td>0.010</td>
<td>0.919</td>
</tr>
<tr>
<td>With</td>
<td>72 (62.07)</td>
<td>69 (62.73)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Without</td>
<td>44 (37.93)</td>
<td>41 (37.27)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diabetes</td>
<td></td>
<td></td>
<td>4.383</td>
<td>0.036</td>
</tr>
<tr>
<td>With</td>
<td>79 (68.10)</td>
<td>60 (54.55)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Without</td>
<td>37 (31.90)</td>
<td>50 (45.45)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GLUT4 mRNA expression in the serum of RG was notably lower than that of CG, with statistically significant difference (P<0.05), as shown in Figure 1.

Expression of thyroid-related hormones in two groups of patients

TSH level in RG was notably higher than that in CG (P<0.01). The levels of FT3 and FT4 in RG were remarkably lower than those in CG (P<0.01), as shown in Figure 2.

Correlation analysis of GLUT1 and GLUT4 with thyroid-related hormones

We analyzed the correlation of GLUT1 and GLUT4 with thyroid-related hormones. The results showed that GLUT1 and GLUT4 were inversely correlated with TSH, but positively correlated with FT3 and FT4 (P<0.05), see Figure 3.

Predictive value of GLUT1 and GLUT4 for poor prognosis of patients

Patients in RG were followed up for one year, and were divided into a MACE group (43 patients) and a non-MACE group (73 patients) according to whether they had major adverse cardiovascular events (MACE) during the follow-up period. By comparing serum GLUT1 and GLUT4 between two groups, it was found that the two patients in MACE group were
GLUT1 and GLUT4 on patients with hypothyroidism and cardiac insufficiency

Univariate analysis of poor prognosis in patients with hypothyroidism complicated with cardiac insufficiency

Univariate analysis of patients in MACE group and non-MACE group exhibited no significant difference in gender, age, drinking, etc. (P>0.05), but significant difference in GLUT1, GLUT4, hypertension and diabetes (P<0.05). More details were shown in Table 3.

Multivariate analysis of poor prognosis in patients with hypothyroidism complicated with cardiac insufficiency

GLUT1, GLUT4 and diabetes were included in the analysis, whether MACE occurred or not was taken as the dependent variable, and Logistic regression model was adopted. The results showed that GLUT1, GLUT4 and diabetes were independent risk factors for
Discussion

As the largest endocrine gland of human body, thyroid hormone secreted by it is an important substance to regulate human growth and development, and produces a marked effect on regulating metabolism of various substances in human body [15, 16]. Thyroid hormone, as a vital neurohumoral endocrine hormone, can promote myocardial protein synthesis, enhance myocardial contractility, improve the responsiveness of heart and blood vessels to adrenaline, and reduce the resistance of peripheral blood vessels [17]. Therefore, some studies [18] believe that hypothyroidism can increase the risk of cardiovascular diseases.

In our study, we found that serum GLUT1 and GLUT4 in patients with hypothyroidism complicated with cardiac insufficiency were remarkably lower than those in cardiac insufficiency patients with normal thyroid function. Energy metabolism is crucial in the normal operation of heart function. When heart function is impaired, so is metabolic function [19]. However, for patients with cardiac insufficiency complicated with hypothyroidism, their metabolic function will appear more serious obstacles [20]. GLUT1 and GLUT4, as glucose transporters, mainly assist the transmembrane transport of glucose molecules inside and outside cells, thus supplying energy to the heart [21]. In the
GLUT1 and GLUT4 on patients with hypothyroidism and cardiac insufficiency

Table 4. Multivariate analysis of poor prognosis in patients with coronary heart disease

<table>
<thead>
<tr>
<th>Factor</th>
<th>β</th>
<th>S.E</th>
<th>Wald</th>
<th>OR</th>
<th>95% CI</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>GLUT1</td>
<td>0.463</td>
<td>0.215</td>
<td>4.655</td>
<td>1.627</td>
<td>1.033-2.409</td>
<td>0.011</td>
</tr>
<tr>
<td>GLUT4</td>
<td>0.904</td>
<td>0.377</td>
<td>6.064</td>
<td>2.538</td>
<td>1.742-3.605</td>
<td><0.001</td>
</tr>
<tr>
<td>Diabetes</td>
<td>1.076</td>
<td>0.473</td>
<td>5.262</td>
<td>2.987</td>
<td>1.171-7.516</td>
<td><0.001</td>
</tr>
</tbody>
</table>

To sum up, GLUT1 and GLUT4 expression levels were significantly decreased in serum of patients with hypothyroidism complicated with cardiac insufficiency. Both of them have high predictive value for poor prognosis of patients, and are independent risk factors for poor prognosis of patients. However, there are some shortcomings in this study. For example, we do not know the specific mechanism between GLUT1, GLUT4 and hypothyroidism, which needs further basic experiments to explore.

Disclosure of conflict of interest

None.

Address correspondence to: Tinglin Guo, Department of Respiratory and Critical Care Medicine, Naval Hospital of Eastern Theater of PLA, No. 98 Wenhua Road, Dinghai District, Zhoushan 316000, Zhejiang Province, China. Tel: +86-18606802120; E-mail: guotinglin11@163.com

References

GLUT1 and GLUT4 on patients with hypothyroidism and cardiac insufficiency

[23] Li Y, Wende AR, N Nathakungwan O, Huang Y, Hu E, Jin H, Boudina S, Abel ED and Jallil T. Cytosolic, but not mitochondrial, oxidative stress is a likely contributor to cardiac hypertrophy resulting from cardiac specific GLUT4 deletion in mice. FEBS J 2012; 279: 599-611.

GLUT1 and GLUT4 on patients with hypothyroidism and cardiac insufficiency
